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When a horizontal magnetic field B(z) is sheared vertically on a lengthscale L in a 
diffusionless fluid, critical layers occur at z, where the local Alfv6n speed V(z,) 
matches the phase speed c of the wave. However, when a vertical field B, is 
introduced, all the critical layers disappear. The present study investigates the 
solution in the neighbourhood of z, when B,/B is very small, in order to clarify the 
manner in which the vertical field annihilates the critical layers. It is found that the 
solution across the critical layer is adjusted in a thin magnetic layer whose thickness 
is determined by the parameter ez ( = U/a V ,  where U ,  V are measures of the vertical 
and horizontal components of the Alfv6n velocity and a/L  is the horizontal 
wavenumber). The vertical field increases the order of the equation governing the 
vertical variations of the amplitude of the perturbations from two to four. Within 
the magnetic layer the two extra Alfv6n waves, one upgoing and the other downgoing, 
interact with those due to the horizontal field to make the solution regular 
everywhere. The mean vertical wave energy flux varies continuously from one 
constant value far on one side of the layer to another constant value far on the other 
side of the layer. 

The influence of the vertical field on the resistive instabilities present in its absence 
is also examined. It is found that the relative importance of resistivity and vertical 
field is measured by the ratio of the thicknesses of the resistive and magnetic layers. 
In general, the influence of the vertical field is to suppress resistive instabilities. The 
slow exchange resistive instabilities are suppressed by the presence of the vertical field 
if e 2 a(Sa)-i while the localized gravitational modes are inhibited for E 2 b(a2S)-:, 
where a, b are constants whose values depend on the profile of the horizontal field 
and on the gravitational parameter G; and S is the Lundquist number. 

1. Introduction 
The propagation and stability properties of hydromagnetic waves in dissipationless 

fluids under a variety of constraints are relevant to a wide spectrum of applications 
ranging from geophysical phenomena (Hide 1966 ; Braginskii 1967 ; Roberts & Soward 
1972 ; Moffatt 1978 ; Eltayeb 1981 a) to astrophysical problems (Lehnert 1954; Moffatt 
1973 ; Acheson 1978) to the construction of thermonuclear reactors (e.g. Bateman 
1978). 

In  a previous paper (Eltayeb 1981 b) the stability of a horizontal layer, of thickness 
L, permeated by a horizontal magnetic field sheared in the vertical direction was 
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studied. It was shown that the existence of a critical level, i.e. a level z, a t  which the 
phase speed of the wave matches the local Al fvh  speed, gives rise to instability. The 
critical level is manifest in the form of a regular singularity, a t  z,, of the second-order 
ordinary differential equation governing the variation of the amplitude of the wave in 
the vertical direction. El Mekki, Eltayeb & McKenzie (1978) studied the critical levels 
of magnetoacoustic waves in the solar atmosphere and indicated that they lead to 
energy absorption or emission. A recent study by Schwartz & Be1 (1984) on wave 
propagation in a fluid sheared vertically in the presence of a magnetic field slightly 
inclined to the horizontal showed that the solutions indicated no critical level 
behaviour and concluded that critical levels play no part in the solar atmosphere 
where the magnetic field is nearly horizontal. However, their numerical solutions gave 
no indication as to the manner in which the addition of a small vertical field to a 
vertically sheared horizontal field possessing a critical level leads to the annihilation 
of that critical level. One of the purposes of the present study is to clarify the manner 
in which the vertical field suppresses the critical levels. This is carried out in $3 below 
and discussed in $5.  

In the absence of a vertical field, it is known (Furth, Killeen & Rosenbluth 1963) 
that  the addition of a small electrical resistivity r to the horizontal field introduces 
new features. Diffusion becomes potent in a thin region, whose thickness is defined 
in terms of r ,  situated on z,. The introduction of resistivity not only smooths out the 
ideal-fluid solutions across the singularity but also adds two more localized solutions 
within the critical layer. The identification of these resistive instabilities depends on 
the solutions within the critical layer matching uniformly to the ideal solutions 
outside the layer where the effect of small resistivity is non-existent. This problem 
has been solved by Baldwin & Roberts (1972) using Laplace transform techniques. 
Since the addition of a small vertical field suppresses the critical level, i t  is of interest 
to examine the relative importance of resistivity and vertical field in order to 
determine whether the vertical field can suppress the resistive instabilities present 
in its absence. 

One view of the Earth’s magnetic field is that  a large toroidal (horizontal) magnetic 
field is maintained against ohmic losses by a large (horizontal) differential rotation 
twisting a small poloidal (vertical) field to  give rise to the so-called cro-dynamo. 
The dynamo here is maintained by a balance being struck between magnetic, Coriolis 
and pressure forces. Although the ratio of horizontal to vertical fields is about 20, 
the dynamo will fail if the vertical field is absent. Now most stability studies of this 
so-called magnetostrophic-balance regime have neglected the poloidal field and 
critical layers were not present because of the simple horizontal field profiles used 
(see e.g. Eltayeb & Kumar 1977; Roberts & Loper 1979). Indeed critical layers are 
present in rotating fluids in situations of direct relevance to the dynamo problem when 
more general basic states are studied (Braginskii & Roberts 1975; Fearn 1984). Now 
the introduction of rotation to the horizontal magnetic field changes the position of 
the critical level (Eltayeb 1977, $3) and also influences the possible basic states. 
In  the present study the role of rotation will not be considered. It is anticipated 
that the general conclusions reached may persist (qualitatively) in the presence of 
rotation. However, rotation may lead to  new effects (see $5 below). 

In $2, the problem is formulated, in $3  the influence of a small vertical field is 
studied in the absence of diffusion, in $4 the simultaneous action of small vertical 
field and small resistivity is examined and in $5 the results are discussed. 
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2. Formulation of the problem 
Consider an inviscid fluid of electrical resistivity r permeated by a magnetic field 

B. Take a Cartesian system of coordinates O(x ,  y ,  z )  in which Oz is vertically upwards 
and Ox, Oy horizontal. Suppose the fluid is contained between the two horizontal 
planes z = zl, z2. The velocity u, pressure P and density p are related to B through 
the equations: 

(2.1) 

(2.2) 

V ' U  = 0, (2.3) 

V . B  = 0, (2.4) 

p g + u * V u )  = -VP+,U-~VA BA B+pg, 

- aB = curl (u A B) +,u-'rV2B, 
at 

aP -+u*Vp = 0, 
at 

in which g is the gravitational acceleration and ,u the magnetic permeability. 
Consider a basic state in which 

u = 0, B = Bo = ( B H ( z ) ,  0, B,), P = Po, p = poo exp (-pz), (2.6) 
where B, and pm are constants. The pressure Po is then governed by 

in which 2 and h are unit vectors along Ox, Oz respectively. The absence of a basic 
flow and rotation makes the force balance, represented by (2.7), between pressure, 
magnetic and gravity forces only. The vertical (total) pressure gradient is balanced 
by gravity and the vertical field B, introduces a horizontal pressure gradient. Even 
if resistivity is neglected and the last term of (2.2) is absent, (2.7) yields 

d2 Jp B H ( 4  = 0, (2.8 1 

so that the horizontal field is linear in z. It is noteworthy that in the absence of B,, 
the profile of BH(z) is arbitrary. 

Assume perturbations of the form 

f(z) exp i(ot + kx), (2.9 ) 

in the velocity, magnetic field, pressure and density. Take a unit of length L, a unit 
of time L/  V and a unit of velocity r/L,u. Here L may be taken as the distance between 
the planes zl, z2 if z2-z1 is finite, otherwise L may be taken to be of the order of the 
lengthscale of variation of the horizontal magnetic field B H  or of the order of the 
horizontal wavelength of the waves. V is the horizontal component of the basic Alfv6n 
velocity defined in (2.12) below. Adopting the Boussinesq approximation, which 
neglects variations except when they occur in the gravity term, the linearized 
perturbation equations can be reduced to the pair 

(2.10) 
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(2.12) 

Here 7, is the Alfvhic timescale used as a unit of time, 7, is the resistive timescale, 
S is the Lundquist number, G is a measure of the gravity effects and E measures the 
effects of the vertical field. In  view of (2.8) F (z )  takes the form l+yz ,  for some y, 
but we find it useful particularly in comparing the results with other situations in 
which F =/= 0 to  use F and F in the analysis below. 

Elimination of W from (2.10) and (2.11) yields a single equation for $ 

(2.13) 

(2.14) 

where H = ~+is2F+c4(a2-$) ,  (2.15) 

and the prime denotes differentiation with respect to the argument z. 
When E = 0, and the vertical field is absent, (2.14) reduces to  the equation studied 

by Baldwin & Roberts (1972). I n  that case H = F and the equation becomes singular 
where F vanishes. When the vertical field is non-zero, H is non-zero a t  F = 0. 
However, if E is very small then H is also very small near F = 0 and the problem 
requires detailed analysis in the neighbourhood of F = 0. It is this situation we intend 
to  examine in order to identify the manner in which the vertical field suppresses the 
critical layer. For this purpose we shall assume that 0 < 8 -4 1. 

In  the absence of resistivity the governing equation can be obtained from (2.13) 
by formally setting S = 00 (i.e. Q = 0).  However, in this case i t  is found that a single 
equation for W is more convenient to deal with. I t  is 

D[p2 + ( F -  ~ E ~ D ) ~ ]  DW-a2[p2 + (F- ~ E ~ D ) ~ ]  W+ G W = 0. (2.16) 

The analysis given below showed that the presence of gravity complicates the solution 
(see Baldwin & Roberts 1972) and in the absence of G the solutions can be obtained 
using standard methods. However, for the main purpose of examining the influence 
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of the vertical field, it can be argued that the presence of G will not change the 
qualitative nature of the results. When both Q and e vanish (i.e. both resistivity and 
vertical field are absent) the wave equation takes the form 

D2[(p2+P)DWl-a2(pz+Iir2) W = 0, 4 = -FW,  (2.17) 

which has singularities at I+,) = kip.  (2.18) 

These singularities lie on the real ( z )  axis if either p = 0 or p = ic, c real. When 
resistivity is added, p is altered by an amount of the order of the thickness of the 
resistive layer (see $4 below) resulting in instability in certain circumstances. The 
cases of interest, in the context of the present basic state, are (i) F = 0 at z, and (ii) 
P = & c, F =I= 0 at z = z,. We shall discuss these two cases in the absence and presence 
of diffusion in $53 and 4 respectively. 

In the neighbourhood of the critical layer z,, the solution of (2.17) takes the form 

(2.19) 

for case (i) ; and 

for case (ii). In (2.20) the upper (lower) signs refer to the critical layer at  P = Tc. 
Before we proceed to $3  we mention here that the solutions away from z, are 

required to satisfy certain conditions which depend on the nature and position of z1 
and z2. For finite values of zl, z2 the normal component of velocity, W ,  must vanish 
there if the planes are rigid, and is continuous for free boundaries. The magnetic 
boundary condition depends on the conductivity of the boundary and in the presence 
of the vertical field boundary layers are present (e.g. Eltayeb 1975). If either z1 or 
z2 or both lie at infinity then the radiation condition, which demands that waves 
propagating energy away from z, are the only legitimate solutions, applies. Since our 
concern here is to identify the solutions across the critical layer, we will not be 
concerned with specific boundary conditions. 

W = R+ln(z-z,) for 0 < IFkcl 4 Iz-zJ 4 1, (2.20) 

3. The diffusionless layer 
In this section, we shall study the solution of (2.16) when G = 0 and 0 < 6 4 1.  

It is clear that (2.16) reduces to (2.17) away from the critical level z, for both cases 
(i) and (ii). The two solutions away from the critical level z, behave as in (2.19), (2.20). 
The other two solutions are located in a thin magnetic layer situated on z,. In order 
to ascertain the form of these solutions away from the critical level, z,, we shall first 
examine the solution of (2.16) in the WKBJ approximation. 

3.1. WKBJ solutions 
Let 

W = exp 1’ g(z) dz, 
J 

in which g(z) = s-2g,(z)+EOg1(Z)+€2g2(z)+... . 
Substitute from (3.1) and (3.2) into (2.16), with G = 0, and equate the coefficients 
of eZn (n = - 1 ,0 ,2 ,  . . .) to zero. The coefficients of E - ~ ,  go ,  e2 give either 
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or go = O ,  ( 1 3 2 + P ) ( g ~ + g ~ - ~ 2 ) + 2 F ' F g 1 = 0 .  (3.4) 

Equation (3.4) is merely (2.17) and yields the solutions in the absence of the vertical 
field. The solutions (3.3), on the other hand, correspond to the two modes whose 
existence is due to the presence of the vertical field. Using the expressions for F(z)  
near x,, the solutions corresponding to  (3.3) become 

for case (i) ; and 

(3.5) 

for case (ii). The subscript c refers to the critical level zc .  I n  (3.6) the solution is written 
down for F = c .  If F = - c ,  we merely replace c by - c  in both solutions. 

There are two points to note here. Firstly, the lengthscale of the magnetic layer 
is of order E .  Secondly, the two solutions in case (ii) are such that one of them is not 
influenced by the critical layer and varies on a smaller length scale of order e2. This 
last point can be clarified by appealing to  the wave normal curves of (2.16). If we 
assume solutions of the form exp i(wt + kx + mz),  and revert to dimensional quantities 
(c.f. (2.12) above), we obtain the local dispersion relation 

(m2+k2) {w2- (kV+mU)2}  = P k 2 ,  N 2  = Pg, (3.7) 

in which V = VF(z) and N is the Vaisala-Brunt frequency. For given w and k there 
are four values of m corresponding to the four possible solutions. When N = 0, 
stratification is absent, the wave normal curves reduce to the two discontinuous 
straight lines described as asymptotes. The other two solutions are not present in the 
figure because they correspond to  evanescent waves for which m (=  kik) is purely 
imaginary. When E + 1, the two values of m for a given value of k (see ordinate CDE 
in figure 1) are such that one has a large magnitude and the other a small magnitude 
because the slope of the two lines is large and negative. The smaller of the two values 
of m corresponds to  the first solution in (3.6) while the larger one corresponds to the 
second. Thus the solutions (3.6) represent two waves, one upgoing and the second 
downgoing. 

The WKBJ solutions (3.5), (3.6) define the anti-Stokes lines for each case 

arg (z-  z,) = (0, in, n, in) -a arg (Fh). (3.8) 

These lines, in the complex z-plane, radiate from the point z,. On each line the 
corresponding solution has an exponent with zero real part so that the nature of the 
solutions changes from a decaying one on one side to  a growing one on the other 
side or vice versa. This property will be used frequently in the analysis below although 
the details are omitted. Refer to the book by Drazin & Reid (1981, $27) for the 
significance of anti-Stokes lines. 

We now proceed to solve (2.16) in the magnetic layer. 

3.2. Case (i) 
I n  the neighbourhood of z = z,, where F(z,) = 0, we have 

P = A&,, (3.9) 
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FIGURE 1. The wave normal curves for an inclined magnetic field. The discontinuous straight lines 
are the asymptotes m = - ( v / U )  k+ ( w z - P U 8 ) / (  Ue+ p)i. The numbers indicate decreasing values 
of P. Curves @ are typical for P > wz/  Vs; curves @ refer to we < P < w2/  E and curves @ 
correspond to P < w2. V, = v/( p+ V)i. The points A and B are equidistant from the origin 0, 
and they always lie on the line m = kU/ v. As P decreases from values greater than we/ V,, curves 
@ bend to touch at A and B when P = w2/E. As IP decreases further the bow-tie AOB turns 
slowly in the clockwise direction and both arms shrink gradually until P = wz when they both 
disappear. Further increase in P results in the open branches @. In the meantime the asymptotes 
move steadily away from the axes. When P approaches zero, the curves approach the pair of 
asymptotes, and the other two waves (strongly influenced by gravity) become evanescent. The small 
arrows indicate the direction of group velocity. The figure is drawn for UZ < P. 

so that (2.16), when G = 0, reduces to 

(3.10) 

where we have assumed Ii’h > 0. If Fh < 0, the two terms ig-A and ( ig+A) are 
replaced by - (ic- A )  and - (iY+A) respectively and the solutions (3.11)-(3.12) 
remain unchanged. The solution of (3.10) can be written as 

5 FLM 167 
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e-ii(t-iA)z dt 9 u 2 = J w  e-ii,i(t+iA)z dt, (3.12) 

and = t-iA, E2 = t+iA. (3.13) 

The solution (3.11)-(3.14) has been written assuming Re (A) < 0. If Re ( A )  > 0, then 
the integrals in the square brackets in (3.1 1)  and (3.12) have their f 00 interchanged. 
The limits are decided by considerations of the anti-Stokes lines (3.8) so that 

a1(g) = e-ii(C-i-4)z G2(6) = e - i i K + i A ) z  (3.14) 

in which 5 

u1 = j-w 

(3.15) 

and both solutions are recessive. It will be shown presently that ul, u2 correspond 
to  the WKBJ solutions (3.5) while the other two solutions match uniformly to the 
horizontal field solution given by (2.19). Indeed i t  is straightforward to show that 

(3.16) W - D  iC, 

(3.17) ic, -lip iB, -lip w - D,+-e 2 I+-e 2 z+iA, In(?) (g+-oO), 
El 6 2  

where 5, = 5-iA, E2 = c+iA, (3.18) 

and the natural logarithm is interpreted as containing the correct argument. Now 

+--e-iiET+-e iB, -lip 2 z+iA,ln(k) (<+a). 
El 5 2  

and in view of (3.15), 

so that, assuming A real, 

(3.19) 

(3.20) 

(3.21) 

Moreover, comparison of (3.16), (3.17) with (3.5) shows that the coefficients of B, and 
C, are identical with the WKBJ solutions and the remainder of W ,  W,, is 

If we write (2.19) in the form 

(3.23) 
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then (3.22) and (3.23) lead to the matching condition for W across the magnetic layer 

W(Z,+) - W(Z,-) = [ W(z)]  = -. xlF;l (3.24) 

The jump [W(z ) ]  in W is merely (A+-A-)  which can be obtained from knowledge 
of the solution away from the critical layer and the application of the appropriate 
boundary conditions at z1,z2 which determine A+ and A_. There is a variety of 
situations of specific examples that can be considered but it is not our intention to 
study these possibilities here. It may, however, be of interest to mention the stability 
of the situation in which the boundaries (assumed to lie at  z = &;) are electrically 
perfectly conducting so that no boundary layers are invoked by the presence of the 
vertical field (see, for example, Eltayeb 1975). In  this case we take F = z so that (2.17) 
outside the critical layer at z = 0 possesses the solution 

P 

cosh az sinh az w+ = 7 + A + - ,  

w- = 7 +A_-. 

az 

cosh az sinh az 
az 

Application of the jump condition (3.24) yields 

and the layer is stable. 

3.3. Case (ii) 
Here we set p = ic, where c is predominantly real. We set 

Equation (2.16) then becomes 

(3.25) 

(3.26) 

in which the upper (lower) signs refer to the corresponding ones in the first of (3.25). 
Equation (3.6) is derived for F: > 0. If F; < 0, then i{+A is replaced by -(i{+A) 
and (3.29) and (3.30) below remain unchanged. Within the magnetic layer of thickness 
S, this equation reduces to 

g [ g + i 5 + A ] F = O ,  d d  

and the ‘missing’ fourth solution is given by 

(3.27) 

(3.28) 

which is confined to an inner layer of thickness 8:. This solution clearly corresponds 
to the second WKBJ solution of (3.6). 

The solution of (3.28) can simply be written as 

5-2 
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in which 
(3.30) 

J-CC 

The integrals in (3.29) and (3.30) assume Re (A) > 0. If Re (A) < 0 then the lower 
limits f o o  should be interchanged. I n  this way the role played by the anti-Stokes 
lines is taken care of. 

The solution u(5) corresponds to the WKBJ solution given by the first of (3.6) and 
the remainder of W matches uniformly to the horizontal field solution given by (2.20). 
Indeed i t  can be shown that 

and the matching of the solution 

W =  [A++1n(z-zc) (2 > zc), 

l.A-+ln(z,-z) ( z  < z,), 
away from the layer is then 

W(z,+)- W(z,-) = [W(z)]  = Tin. 

(3.32) 

(3.33) 

This condition shows that the jump in W across zc depends on whether F = c or 
F = -c  a t  z,. Moreover, the total jump across a number of singularities will depend 
on their number as well as their type. I n  particular the result (3.33) is consistent with 
the analysis by Eltayeb (1981 b).  If there are two singularities one at F = c and 
another at F = - c  then the net jump across both singularities vanishes. 

The analysis presented in this section has shown that the presence of a small 
vertical magnetic field (in the sense that e2 4 1)  provides a mechanism of smoothing 
out the solutions in the critical layer present in its absence i.e. the solution can be 
uniformly connected across the level z, without appealing to causality arguments 
(Miles 1961). The energy flux per unit mass of the system can be written as 

F =  Pu+$u~u+ PU-(I/ .U) V ,  (3.34) 

(cf. Eltayeb & McKenzie 1977) where V is the total (perturbation+basic) Alfven 
velocity. The mean wave energy flux in the z-direction is the expression (3.34) 
averaged over a wavelength less the energy flux due to the basic state. In  dimensional 
units this becomes 

(3.35) 

where the bar denotes the average. By using the perturbation equations we can 
express (3.35) as 

where (3.37) 

I n  the absence of the vertical field, B = 0 and the energy flux is proportional to the 
wave invariant of the svstem 

Y 

d =  - 1 + -  wu, ( 3- 
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by Fo wave = - V c d ,  

so that Fo wave is constant everywhere except at critical levels where it experiences 
a finite jump (Eltayeb 1981 b,  $5). When s + 0, however, the mean wave energy flux 
in the vertical direction is not constant and the terms in (3.36) involving E contribute 
to pWave. Away from the critical level these terms are negligibly small but as the 
critical level is approached they become more important. If F = 0 at 2, then the terms 
reach their maximum order of magnitude ofs but for case (ii), where Fc 9 0, the s-terms 
become comparable with the first term. Moreover, the vertical field also influences 
the first term in (3.36) through its effect on the solutions W and u within the critical 
layer. 

A hydromagnetic critical level is defined as a curve along which the phase speed 
of the wave matches the local Alfv6n speed, and energy is forced to propagate along 
that field line (El Sawi & Eltayeb 1981). When a small vertical field of uniform value 
is added to a horizontal field sheared vertically the field lines become inclined to the 
horizontal and it becomes impossible for the horizontal phase speed of the wave to 
match the local Alfv6n speed although it may be close to it if s is small enough. The 
local Alfv6n speed becomes inclined to the horizontal and its non-zero vertical 
component is responsible for the two new modes. If the vertical field is gradually 
increased the vertical component of the local Alfv6n speed increases and consequently 
the lengthscale of the ‘new ’ modes increases and their domain of influence spreads 
until it spans the whole region when E = O(1) and the critical layer disappears 
completely. 

The introduction of the vertical field then introduces two Alfv6n waves, one 
downgoing and the other upgoing, which smooth out the solutions across the critical 
level. This mechanism is different from the influence of a small resistivity which is 
invoked by the shortening lengthscale of variation of the solutions as the critical level 
is approached. The solutions brought about by diffusion either grow or decay with 
time. Nevertheless, the simultaneous action of a small resistivity and a small vertical 
field has not been studied before and it is of interest to examine it here. This is carried 
out in the next section. 

4. The diffusive layer in the presence of the vertical field 
The critical layer in the absence of the vertical field was studied by Gibson & Kent 

(1971) when G = 0 and by Baldwin & Roberts (1972) for all values of G. The presence 
of G introduces more types of instabilities as compared with the tear mode instability 
which is relevant to the case G = 0. The tear mode instability is known to be 
important to the problem of plasma confinement and has attracted considerable 
attention (see e.g. Steinolfson & Van Hoven 1984). In the present analysis we shall 
study the situation when G = 0. However, for the purpose of identifying the influence 
of the vertical field we anticipate that the conclusions reached below (see $5) will apply 
to the slow interchange modes present for G 9 0. 

4.1. Case ( i )  
If we adopt the scaling appropriate to the critical layer in the absence of the field, 
namely 
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in which (4.3) 

When E = 0 and the vertical field is absent, we recover the equation studied by Gibson 
& Kent (1971). The presence of the vertical field is manifest in (4.2) through the 
parameters R and 7 .  If R is small then the diffusive critical layer thickness 8, is much 
larger than the thickness of the magnetic layer 8,. The ideal solution away from 6 = 0 
is then adjusted by the diffusive layer and the influence of the vertical field can only 
be felt in an inner region about c = 0. But the solution of (4.2) is regular just outside 
the layer of thickness 8, and consequently the influence of the vertical field can only 
be felt at second order. Indeed to first order in & the problem (4.2) can be reduced 
to the problem with R = 0 if we neglect R (=  (&)2) in u and use 6 = c+$ in place 
of c as the independent variable. An analysis on the lines of that used by Gibson & 
Kent (1971) shows that the field does not influence the leading-order problem. 

When R % 1,  u N R and 171 % 1 and the use of the independent variable 6 = @,,/8, 
reduces (4.2) to the one obtainable in the absence of diffusion, i.e. the solution 
obtained in $3.2. Diffusion is suppressed. This applies even if G 9 0. 

When R = O ( l ) ,  both influences are potent and (4.2) must be solved in its entirety. 
This can be achieved by the use of Laplace transforms or by numerical means. We 
will not attempt the solution of (4.2) for R = O( 1 )  here. However it is evidently clear 
from the analysis of the extreme cases R 4 1 and R % 1 that the vertical field will 
suppress resistive modes if R > R,, where R, = O(1). Translated into the original 
parameters, this means that 

(4.4) 

in which a is a constant depending on the profile F(z )  of the horizontal field and on 
G. 

The examination of case (ii) showed similar results and we shall therefore not 
present them here. 

U 
V 
- 2 ua(Sa)-i, 

5. Concluding remarks 
The investigations on the influence of a small magnetic field on the critical layers 

of the dissipationless horizontal magnetic shear showed that the vertical field 
introduces two Alfv6n waves which interact with the two waves produced by the 
horizontal field within a thin ' magnetic layer ' situated on the critical level 2,. As a 
consequence the full solution is regular everywhere. This occurs at all critical levels 
whether the Alfv6n speed vanishes on z, or not. Also, the second-order ordinary 
differential equation obtained for the horizontal-field case becomes of fourth order 
in the presence of the vertical field. It is then not possible to construct a wave 
invariant for the system (Eltayeb 1977, $2). Consequently the mean wave energy flux 
in the vertical direction (see $ 3  above) is in general a function of z, although it acquires 
constant values far away from the magnetic layer. As the layer is approached from 
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one side, the mean energy flux varies continuously across the magnetic layer to a 
constant value on the far side of the critical level. 

The influence of the vertical field on the resistive modes of the horizontal-field model 
was also studied. It is known that for a horizontal-field profile F(z )  there are three 
levels where localized resistive instabilities can occur when the electrical resistivity 
r is small. These occur where (i) F = 0, (ii) F = c and F: =I= 0, (iii) F = c ,  P; = 0. For 
case (i) two types of instability are possible. The slow interchange modes for which 
G 6 O(1) and a 6 0(1) ,  a category that includes the tear mode for which G = 0. The 
effect of the vertical field on these instabilities was studied in detail in case (i) of $4 
above to find that the vertical field suppresses them if 

where a is a constant depending on G and the profile F(z )  of the horizontal field (see 
immediately above (4.4)). This condition applies both to the tearing mode (growth 
rate O((Sa)-f) and the slow gravitational interchange mode (growth rate O((Sa)-i)) 
because the thickness of the resistive layer is the same in both cases. 

Another type of instability associated with case (i) is the so-called localized 
gravitational modes which occur for large values of a and have been shown by 
Baldwin & Roberts (1972, $6) to have growth rates 

in which h is an integer. A detailed analysis of the influence of the vertical field on 
this instability (omitted here for brevity) showed that they are suppressed if 

e2 2 bS-:a-l, (5.2) 

where b depends on F:. Investigations of the resistive modes for case (ii) showed 
results similar to (5.1). 

Case (iii) lies outside the basic state of $2 above because F"(z) vanishes everywhere 
and therefore P(z) has no extreme values. Attempts to find a simple model for case 
(iii) failed. Even if uniform vertical rotation with a flow U(z )  parallel to the horizontal 
field were introduced we find that F ( z )  = 0. It transpires that the basic state must 
depend on at least two independent variables or U(z)  be inclined to the field to 
maintain a non-vanishing P"(z). A basic state of this type is outside the scope of the 
present study. If F ( z )  is maintained by some artificial source, however, a detailed 
analysis shows that the vertical field again suppresses the resistive instabilities if 
8 2 O((Sa)-i) ,  the difference here being due to a magnetic layer of thickness O(d).  
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